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Abstract

Long contexts remain difficult for language mod-
els, with empirical evidence demonstrating that ac-
curacy declines even when inputs are well within
the model’s supported length. Recursive Language
Models (RLMs) provide a way to handle these in-
puts by partitioning the context and invoking the
model on smaller subproblems. Existing implemen-
tations, specifically Zhang (2025), rely on simple
token or regex-based partitioning, basic retrieval
heuristics, and strictly sequential execution. These
settings make it unclear which parts of the RLM
pipeline contribute most to performance. To ad-
dress unexplored design space, we conduct a sys-
tematic component analysis of RLMs, decoupling
partitioning (token, structural, semantic), retrieval
(regex, embedding-based, unfiltered), and execution
mode (sequential vs. parallel). Using OOLONG and
LoCoDiff, we evaluate how these choices affect accu-
racy, token usage, and characteristic failure modes.
Our results indicate that while direct prompting
often outperforms current RLM implementations
due to error accumulation in recursive steps, opti-
mizing the RLM pipeline (specifically through se-
mantic partitioning and embedding-based retrieval)
significantly improves performance over naive token-
based baselines. We further show that these smarter
strategies introduce substantial efficiency overheads,
highlighting a critical trade-off between architectural
complexity and latency. This work provides a clearer
understanding of which RLM design choices have
significant effects on long-context performance.

1 Introduction

Long documents are common across many domains,
from legal contracts to scientific papers. Tasks such
as answering questions about these documents or

tracing how information evolves across sections re-
quire models to integrate evidence that may be
widely dispersed. As LLMSs are increasingly applied
to these settings, their ability to operate reliably over
long contexts is becoming increasingly important.

Large language models can process inputs on the
order of tens to hundreds of thousands of tokens,
but their performance does not remain stable as
inputs become longer. Empirical evaluations show
that accuracy declines as context length increases,
especially when the input mixes many unrelated
topics. In these cases, the model has more difficulty
identifying which parts of the context are relevant to
the query. This degradation, commonly referred to as
context rot, leads to consistent failures on tasks that
require locating and combining information spread
across long documents.

Context rot often stems from unreliable selection
rather than limited capacity: models can ingest long
inputs, but they struggle to identify the specific
evidence needed for the query. However, most ar-
chitectural advances target capacity, not selection.
Approaches such as rotary embeddings (RoFormer)
and long-range attention (Linformer, Longformer)
mainly increase the number of tokens a model can
accept. These methods expand the window but do
not change how the model organizes or prioritizes
information within that window. In practice, this
means that models can read longer inputs but may
not improve on tasks that require locating specific
evidence across heterogeneous or multi-section docu-
ments.

Recursive Language Models (RLMs), as proposed
by Zhang (2025), improve upon previous methods by
introducing a recursive decomposition of long inputs.
While previous methods treat the entire input as
a single block, RLMs break the input into smaller
partitions, allowing more focused attention on each
segment. The model can call back into itself on sub-
problems, building a tree of recursive invocations
whose leaves deal with smaller, more manageable



slices of the original context.

RLMs improve the structural handling of long
inputs, but they introduce significant limitations.
In particular, they rely on partitioning via token
splits and regex-based chunking, which often fail to
align with the semantic boundaries of the input. As
a result, important dependencies may be split or
lost in the partitioning process, limiting the RLM’s
ability to fully capture relevant relationships within
the input. In addition, once partitions are formed,
they are handled one after another, which may in-
troduce unnecessary latency when sub-problems are
independent.

These observations raise several design questions
that existing work has not explored:

e How does the choice of partitioning strategy affect
long-context accuracy and efficiency?

e How should RLMs retrieve or select partitions
when the context is too large to process in full?

e Can we exploit the natural independence of many
sub-problems to run them in parallel and reduce
latency, and does the stitching method used to
combine partial answers affect how reliable this
parallel execution is?

To address these questions, we vary three under-
explored RLM parameters: partitioning, retrieval,
and parallelization. Our goal is to understand how
these choices affect accuracy, token usage, and run-
time behavior on long-context tasks, and to identify
configurations that improve performance.

2 Related Work

Prior work on long-context performance can be
grouped into three main categories: architectures
that extend the effective context length of trans-
former models, retrieval-based methods that selec-
tively surface relevant text, and recursive frameworks
that decompose inputs into smaller units. We situate
our work within these areas, highlighting how exist-
ing approaches address capacity or retrieval but leave
open questions about how internal RLM components
affect long-context performance.

2.1 Long-context architectures

There has been substantial prior work on how to
increase the effective context length of transformer
models. Rotary positional embeddings support ex-
trapolation beyond trained context limits by en-
coding relative positions in a continuous rotational
space [3]. Other approaches introduce modified at-
tention mechanisms that reduce memory complex-
ity, such as block-sparse patterns, sliding-window

mechanisms, and long-range attention mechanisms
(e.g., Linformer, Longformer) [4][5][7]. Transformer-
XL extends context by caching hidden states across
segments, while Memorizing Transformers store key-
value pairs in an external memory for reuse across
longer sequences [8][9].

More recent methods such as FlashAttention and
its long-context extensions focus on improving the
efficiency of exact attention rather than modifying
the inductive bias [10]. These approaches primarily
address the capacity problem (i.e., how many tokens
the model can process), rather than the selection
problem of determining which parts of the input
matter for the query. As a result, improvements in
raw context size do not necessarily translate to im-
proved reasoning over heterogeneous or multi-topic
documents. Our work focuses on the selection prob-
lem. We take the model’s input capacity as given
and evaluate how different partitioning and retrieval
strategies affect performance within the RLM frame-
work.

2.2 Retrieval-augmented generation

Retrieval-augmented generation (RAG) combines
a pretrained language model with an external re-
trieval module that selects potentially relevant text
before generation [11]. Prior work includes sparse
retrieval, dense retrieval, and hybrid approaches that
mix sparse and dense signals [12]. Multi-hop sys-
tems extend this setup by retrieving in stages, where
each retrieval step conditions on the results of the
previous one [13].

RAG methods work well when relevant informa-
tion can be surfaced as a small set of passages drawn
from a large corpus. These systems, however, typ-
ically treat each document or passage as an inde-
pendent retrieval unit and do not reason about the
internal structure of a long document. They also
operate outside the model’s own inference loop, with
the retrieval module running first and then the lan-
guage model conditions on whatever text is returned
[11].

In contrast, our setting involves recursive decom-
position inside the model. The RLM decides how to
partition its provided context, which partitions to
inspect, and when to invoke further recursive calls.
This leads to a different set of design questions (i.e.,
partition type, partition selection, and execution
strategy) that are not addressed by standard RAG
pipelines.



2.3 Recursive Language Models

Recursive Language Models (RLMs), introduced by
Zhang (2025), formalize a mechanism in which the
model interacts with a minimal Python REPL that
exposes the input context and provides a tool for
recursive self-calls [6]. Rather than processing the
entire input in a single forward pass, the model can
choose to inspect the context, split it into smaller
pieces, and invoke itself on these pieces as separate
subproblems. Each call returns a textual result that
becomes available to the parent call, and the model
ultimately produces a final answer using a designated
instruction.

This setup gives the model explicit control over
how to break down the task and how to use interme-
diate results, shifting part of the reasoning process
into a program-driven control flow. Zhang’s pro-
totype keeps the surrounding system intentionally
minimal in order to isolate the behavior of the recur-
sive mechanism. Partitioning is performed through
simple operations such as token slicing or regex-based
splitting, retrieval is handled by string matching, and
recursive calls are executed sequentially. The REPL
interface provides only a few primitive operations,
including reading the context, printing intermediate
values, and calling the model again on a selected
sub-context.

This simplicity allows the work to demonstrate
that RLMs can successfully coordinate multi-step
decomposition without hand-crafted prompts, but
it also means the system does not explore alterna-
tive partitioning strategies, retrieval methods, or
execution modes. Our work extends this baseline by
varying those components explicitly to study how
they influence performance in long-context settings.
We vary partitioning granularity, retrieval method,
and execution mode to quantify how each dimen-
sion affects accuracy, token usage, and latency in
long-context settings. To our knowledge, no prior
study analyzes these design choices in a controlled
empirical setting or compares alternative partition-
ing and retrieval strategies within RLMs. This paper
addresses that gap.

3 Methods

To enable a systematic analysis of RLM behavior, we
describe the RLM setup and the component choices
evaluated in this work.

3.1 RLM framework and notation

We consider long-context tasks where the input con-
sists of a query ¢ and a context C', such as a long

document, code repository, or sequence of diffs. The
goal of the RLM is to produce an answer a = f(q, C)
using a base language model M and a recursive
calling interface. In Zhang’s framework, the model
interacts with a restricted Python REPL that ex-
poses a context variable containing C' and a tool
for making recursive calls. Conceptually, the RLM:
1. writes Python code to inspect and transform
context;
2. decides when to call itself recursively on sub-
queries and sub-contexts;
3. combines the results and emits a final answer via
a FINAL(...) call.
We introduce a partitioning function

P9:C’_> (pla"'apK>7

where each py is a partition (a contiguous or struc-
tured subset of C') and 6 encodes strategy-specific
hyperparameters (e.g., chunk size, similarity thresh-
olds). We also introduce a retrieval function

R¢(Q7{pk}) =S5 C {17"'7K}

that selects a subset of partition indices to process
recursively, where ¢ denotes retrieval-specific param-
eters (e.g., number of partitions to select). Our
modifications to the RLM core are chosen such that:
e the public API, RLM(...) .completion(query,
context), remains unchanged;
e partitioning and retrieval are configurable and
swappable;
e the recursion tree can fan out over selected par-
titions and processes them in parallel.

3.2 Partitioning Strategies

We implement and benchmark three partitioning
methods:

e Baseline (Token-based): We replicate the orig-
inal paper’s naive chunking by fixed token or line
count. This serves as our main baseline, and we
aim to match the behavior of Zhang’s released
implementation as closely as possible.

e Structural Partitioning: We introduce a low-
cost heuristic using explicit document structure,
partitioning along natural boundaries like para-
graphs (e.g., \n\n), section headings, or functions.
For code or diffs, we partition by file, function, or
hunk boundaries. The purpose of this structural
partitioning is to preserve local meaning and co-
herence in a computationally cheap manner.

e Semantic Partitioning: We also partition
based on detectable topic shifts by calculating
cosine similarity between adjacent sentence em-



beddings and then splitting the text where simi-
larity drops below a threshold. Specifically, we
first break the context into sentences or short
spans, compute their embeddings, then construct
a similarity graph over adjacent spans. When-
ever similarity falls below a tuned threshold, we
insert a boundary. This challenges the original
avoidance of semantic tools and is designed to
improve sub-query relevance by grouping spans
that are semantically related.

We represent each partition as a small data struc-
ture containing its raw text, offsets into the original
context, and metadata (e.g., structural type, mean
embedding). This metadata supports later retrieval
and prevents having to re-embed or re-parse the
entire document.

3.3 Retrieval Primitives

While partitioning decides how we slice the context,
retrieval decides which slices to pass into recursive
calls. We compare three retrieval primitives:

e Regex / Keyword “Grepping”: For each
partition, we count keyword or regex matches
between the query and the partition text, scoring
partitions by number and position of matches.
This approximates Zhang’s original RLM behav-
ior and serves as a strong baseline for tasks where
literal matches are informative (e.g., error mes-
sages, function names).

e Embedding-Based Retrieval: We embed
both the query and partitions (reusing semantic-
partition embeddings when available) and score
partitions by cosine similarity. This tests whether
semantic retrieval helps the RLM focus on the
parts of the context that matter, especially when
the query and answer use different wording.

e Unfiltered Peeking: As a diagnostic baseline,
we pass all partitions (or the first k) in order, with
no filtering beyond budget limits. This measures
how much retrieval itself contributes, relative to
partitioning alone, and serves as a control when
interpreting improvements.

By decoupling partitioning and retrieval, we sys-
tematically evaluate the cross-product of strate-
gies and identify where each component helps or
hurts the RLM performance. For instance, semantic
partitioning may interact differently with regex vs.
embedding-based retrieval.

3.4 Parallelization and Stitching

We introduce parallel execution and structured
stitching to improve efficiency in recursive calls.
These mechanisms determine how sub-queries run

and how their outputs are combined.
3.4.1 Parallelization

To address the RLM’s inherent computational
bottlenecks, we modify the framework to support
concurrent execution of independent sub-queries.
When a partitioning strategy produces windows
that can be evaluated independently, the system
spawns parallel “child” calls so that these parti-
tions are processed at the same time rather than
sequentially. This reduces idle time in the recursion
tree and allows the model to use available compute
more efficiently. We implement parallelism using
asynchronous execution within the RLM. Each child
call is issued as an independent asynchronous task,
and the parent call waits for all tasks to complete
before proceeding to the stitching stage. The
implementation does not change the model interface
or the recursion API; it modifies only the scheduling
of child calls. We also enforce simple safeguards,
including per-call timeouts and a maximum number
of concurrent tasks, to avoid uncontrolled fan-out or
exceeding rate limits. This extension allows us to
evaluate whether parallel execution reduces latency
for workloads where the recursive decomposition
produces multiple independent subproblems.

3.4.2 Stitching

A key design choice is how to stitch together par-
tial answers into a final response. Our initial ap-
proach is to:

1. run recursive calls over selected partitions in par-
allel, each producing a partial answer, as well as
a confidence score
2. feed the list of partial answers, along with the
original query, into a final RLM call that synthe-
sizes a single answer.
We evaluate two approaches for combining the out-
puts of parallel recursive calls. First, we evaluate
a sitmple concatenation method. In this approach,
each child call produces a partial answer, and these
partial answers are placed one after another to form
a single combined string. The combined string is
then given to the final RLM call, which is responsi-
ble for producing the final output. This approach
is inexpensive to implement but does not indicate
which partition each partial answer came from, and
the final model must infer this structure on its own.

Second, we test a structured stitching prompt. For
each partition, the partial answer is wrapped with
lightweight metadata: (i) the partition index, (ii)
a short descriptor or summary generated for that
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Figure 1: A system diagram of the RLM pipeline. The model processes a long input context by first partitioning
it into semantically coherent segments and retrieving the most relevant subsets. These segments are then passed
through a recursive execution loop that selectively expands or summarizes content before producing a stitched final
answer. This modular structure highlights the key design choices (i.e., partitioning, retrieval, and recursive control)
that determine long-context performance in RLMs and form the focus of our empirical analysis.

partition, and (iii) the corresponding partial answer.
This format makes the relationship between parti-
tions and sub-answers explicit and may assist the
model in combining them.

To evaluate parallel execution, we measure its ef-
fect on latency, total token usage, and accuracy while
holding all other settings fixed. We also examine
common failure cases, including conflicting partial
answers, situations where relevant information is
split across partitions, and cases where the stitching
step does not account for cross-partition dependen-
cies. These evaluations allow us to determine when
parallel execution provides clear efficiency benefits
and when stitching or dependency structure limits
performance.

3.5 Implementation of RLM Extensions

We use GPT-5 and GPT-5-mini via the OpenAl
API, matching Zhang’s setup, with GPT-5-mini for
cost-effective experimentation. We build on Zhang’s
minimal RLM implementation [6], extending it with
custom partition and retrieval modules. Sentence-
BERT handles embeddings for semantic partitioning
and embedding-based retrieval.
We extend Zhang’s codebase with:
e rlm/partitions.py, implementing token-based,
structural, semantic, and learned partitioning via

sentence embedding similarity and configuration
selection.

e rlm/retrieval.py, providing regex, embedding-
based, and unfiltered retrieval primitives.

e Parallelization support in the core RLM class
(e.g., RLM_REPL) using asyncio for concurrent
sub-queries with a stitching pass.

We also implement a lightweight experiment har-
ness (e.g., examples/rlml_ablation.py) that or-
chestrates sweeps over partition X retrieval x par-
allelization settings and logs accuracy, latency, and
token metrics.

4 Evaluation

To assess the impact of different RLM components,
we evaluate their effects on accuracy, token usage,
and latency across long-context benchmarks.

4.1 Research Questions and Baselines

We structure our study around the following research
questions:

e RQ1 (Partitioning): Do smarter partition
strategies (token-based, structural, semantic) im-
prove task accuracy and cost/latency vs. naive
token-based splitting?



e RQ2 (Retrieval Primitive): When peek-
ing into the partitioned context, how do
regex/keyword “grepping,” embedding-based fil-
ters, and unfiltered peeking compare in terms of
accuracy and efficiency?

e RQ3 (Parallelization): Does running indepen-
dent children over partitions concurrently reduce
wall-clock time without harming accuracy (e.g.,
due to cross-child dependencies)?

¢ RQ4 (Budget Sensitivity, stretch): How
do recursion depth/budget and per-child token
limits affect accuracy, total tokens, and cost?

Baselines. Our primary baseline is the configu-
ration that most closely matches Zhang’s original
RLM setup: token-based partitioning, regex-style
retrieval, and sequential recursive calls. We also
use an “unfiltered” retrieval baseline (no intelligent
filtering) to isolate the value of retrieval from the
value of partitioning. These baselines anchor our
experiments and ensure that improvements can be
interpreted as genuine gains over existing practice.

4.2 Benchmarks and Datasets

Our primary evaluation datasets are the OOLONG
trec_coarse split and LoCoDiff. OOLONG is a dense
long-context QA benchmark that requires answering
questions over long, structured documents. We use
the trec_coarse subset and report exact match and
F1, analyzing how performance changes with context
length. This setting stresses the model’s ability to
locate and integrate dispersed evidence in narrative
or expository text. LoCoDiff is a long git-diff —
final file state benchmark. We report exact-match
accuracy and a similarity measure to the ground-
truth file, and examine how performance varies with
diff length. This dataset is well suited for testing
whether partition strategies preserve the relevant
change sets over long edit histories.

Together, these tasks represent two common types
of long-context reasoning. OOLONG requires multi-
hop reasoning over long narrative documents, where
the answer depends on finding and combining pieces
of information that may be far apart. LoCoDiff
requires reconstructing a final file state from long
sequences of edits, which involves aggregating small
pieces of evidence spread across many diff segments.
In both cases, relevant information is not contiguous,
and local signals are often not enough to answer
the query. These properties make the tasks well
suited for evaluating how different RLM partitioning,
retrieval, and execution choices behave in settings
where context rot is likely to appear.

4.3 Metrics and Experimental Design

For each dataset and configuration, we measure:

e Task accuracy: Exact match (EM) and F1 for
QA-style tasks, and exact-match accuracy for
structured prediction tasks such as LoCoDiff.

e LLM calls: Total number of LLM calls across
all recursive calls and the root call, providing a
proxy for cost.

e Latency: Wall-clock response time, measured
from the initial call to receipt of the final answer,
for both sequential and parallel variants.

We conduct controlled experiments where we vary
a single dimension at a time:

e Fix retrieval and parallelization, vary partitioning
(baseline vs. structural vs. semantic).

e Fix partitioning and parallelization, vary retrieval
(regex vs. embedding vs. unfiltered).

e Fix the best partitioning and retrieval pair, vary
parallelization (sequentials vs. parallel) and re-
cursion budgets.

This design allows us to analyze the relative contribu-
tions of each component and to identify interactions
(e.g., semantic partitioning may interact differently
with regex vs. embedding-based retrieval).

4.4 Success Criteria

Our success criteria reflect both accuracy and effi-
ciency considerations:

e Accuracy gains at equal/lower cost: + >3-5
EM points on OOLONG hard or + >5% relative
on LoCoDiff exact-match, with <0% increase in
median tokens.

e Cost/latency gains at equal accuracy:
>20% fewer tokens or >25% lower p50 latency
with <1 EM point drop.

5 Results and Analysis

We evaluate how three architectural choices within
the RLM framework—partitioning, retrieval, and
execution mode—affect accuracy, token usage, and
latency on OOLONG. Rather than seeking absolute
performance improvements, our goal is to quantify
relative differences between configurations and un-
derstand which components materially affect long-
context behavior.

5.1 Overall Performance Across Configura-
tions

We first compare the overall performance of RLM
strategies against a direct prompting baseline using



GPT-5-mini. Figure 2 summarizes the F1 scores
across configurations on the OOLONG benchmark.

G0LONGBench F1 Performance by Strategy

Figure 2: OOLONGBench F1 Performance by Strategy.
Direct prompting (leftmost bar) significantly outperforms
all RLM variants, though Semantic + Embedding leads
among recursive approaches.

The most immediate observation is that direct
prompting achieves the best performance. As shown
in the results, GPT-5-mini without any recursive de-
composition achieves an F1 score of approximately
0.35, which is significantly higher than any RLM
configuration tested. The best performing RLM
strategy (Semantic Partitioning + Embedding Re-
trieval) achieves an F1 score of roughly 0.11, less
than a third of the baseline performance.

This discrepancy highlights the issue of error ac-
cumulation in current recursive approaches. While
RLMs are theoretically capable of handling infinite
contexts by breaking them down, in practice, the
multi-step recursion introduces noise at each level of
the tree. If a child call fails to retrieve the correct
partition or summarizes it poorly, that error propa-
gates up to the root, degrading the final answer. The
direct model, by contrast, maintains access to the
full global context in its attention window (up to its
limit), allowing it to integrate information without
the lossy compression inherent in the recursive steps.

However, among the RLM variants, we observe dis-
tinct performance tiers. The configuration of Seman-
tic Partitioning combined with Embedding Retrieval
produces the strongest results. This suggests that
while recursion has a cost, “smarter” components
can mitigate the downside by ensuring that the most
relevant information is preserved and passed up the
tree.

5.2 Effect of Partitioning Strategy

We isolate the effect of partitioning strategy by av-
eraging performance across all retrieval methods.
We compared three strategies: Token-based (naive
splitting), Structural (document boundaries), and
Semantic (embedding-based splitting).

Effect of Partitioning Strategy on Accuracy
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Figure 3: Effect of Partitioning Strategy on Accuracy.
Semantic partitioning yields the highest average F1 score,
followed by Structural, then Token.

The results demonstrate a clear hierarchy among
the partitioning methods, with Semantic achieving
the highest performance, followed by Structural, and
then Token.

Semantic partitioning achieves the highest average
F1 score (= 0.037). By splitting the text based on
topic shifts and embedding similarity, this strategy
likely preserves the coherence of the context. When
a partition is self-contained, the recursive call is more
likely to generate a meaningful partial answer.

Structural Partitioning follows (=~ 0.029). This
confirms that even simple heuristics like splitting by
paragraphs or sections are superior to arbitrary token
counts, as they respect natural language boundaries.

Token Partitioning performs the worst (/= 0.025).
Naive splitting risks cutting sentences or logical ar-
guments in half, making it difficult for the model to
interpret the fragment in isolation.

This finding supports the hypothesis that meaning-
aligned partitioning improves performance by help-
ing the model retrieve and use relevant information
more effectively.

5.3 Effect of Retrieval Strategy

Once the context is partitioned, the RLM must se-
lect which partitions to process. We compared three
retrieval primitives: Unfiltered (processing partitions
in order), Regex (keyword matching), and Embed-
ding (semantic similarity).

Our experiments show that Embedding Retrieval
produces the strongest results. This effect is par-
ticularly pronounced when combined with Semantic
Partitioning.

Under Semantic Partitioning, Embedding Re-
trieval achieves an average F1 score of nearly 0.06,
doubling the performance of Unfiltered or Regex
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Figure 4: Retrieval Effect Under Token vs Semantic
Partitioning. Embedding retrieval shows a dramatic
improvement, particularly when paired with Semantic
Partitioning.

retrieval in the same condition. Under Token Parti-
tioning, Embedding Retrieval still outperforms the
other methods (= 0.045 vs ~ 0.015), but the ceiling
is lower due to the poor quality of the partitions
themselves.

The strong performance of embedding retrieval
suggests that its relevance matching reduces the re-
trieval errors that otherwise compound during recur-
sion. Regex retrieval performs poorly (comparable
to Unfiltered) likely because the questions in OO-
LONG involve semantic understanding that simple
keyword matching cannot capture.

5.4 Efficiency and Latency Analysis

While accuracy is paramount, RLMs are often pro-
posed as an efficiency solution for contexts that ex-
ceed a single model’s capacity. We analyzed the
latency and token cost (proxied by number of LLM
calls) for each strategy. The data reveals that RLM
strategies introduce substantial efficiency overhead.

Efficiency: Latency vs LLM Calls

Figure 5: Efficiency: Latency vs LLM Calls. RLM
strategies introduce significant overhead compared to
direct execution.

Direct execution (GPT-5-mini) is extremely effi-

LoCoDiff: Accuracy vs Context Length
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Figure 6: LoCoDiff Exact-Match Accuracy by Context
Length. The RLM (Semantic + Embedding) outperforms
direct prompting at short and medium context lengths,
but both methods degrade severely beyond 40k tokens.

cient, requiring only 1 LLM call and achieving the
lowest latency. RLM variants scale the number of
calls significantly. The naive Token + Unfiltered
strategy is relatively cheap but inaccurate. The
high-performing Semantic + Embedding strategy re-
quires a moderate number of calls but incurs higher
latency due to the embedding computation and the
overhead of managing the recursion tree. Some con-
figurations, like Structural + Regex, spiked to nearly
20 LLM calls per query on average, indicating ineffi-
cient search or excessive recursion depth.

This indicates that recursive execution and re-
trieval steps are the primary sources of added cost.
While parallelization (discussed in Methods) can
mitigate wall-clock latency, the total compute cost
(token usage) remains significantly higher than direct
processing for the context lengths tested here.

5.5 LoCoDiff: Task-Dependent RLM Benefits

While OOLONG results favored direct prompting,
LoCoDiff reveals a more nuanced picture. We eval-
uated both the baseline (direct GPT-5-mini) and
the best-performing RLM configuration (Semantic +
Embedding) across context length buckets, measur-
ing both exact-match accuracy and output similarity
to ground truth.

Figure 6 illustrates two distinct patterns in the
exact-match results. First, at short to medium con-
text lengths, the RLM demonstrates a clear advan-
tage. For the smallest contexts, RLM accuracy ex-
ceeds the baseline by 10-15 absolute points. This
advantage persists, though diminishes, through the
1020k token range. Second, at very long contexts
(beyond approximately 40k tokens), both methods
collapse. Accuracy for both approaches trends to-
ward zero, with only marginal RLM advantages
in some intermediate buckets. Neither system ap-
proaches acceptable performance once the edit his-



tory becomes sufficiently large, confirming that both
methods operate in the context rot regime for ex-
treme lengths.

Even when exact-match fails, we observe mean-
ingful differences in output quality as measured by
similarity to ground truth:

e Small contexts (<10k tokens, n = 7): Both
methods achieve high similarity (~0.9+), with
negligible differences. When diffs are short, both
approaches reconstruct the final file reliably.

e Medium contexts (10-25k tokens, n = 34):
Similarity decreases for both methods, but the
RLM retains a ~0.05 advantage (approximately
0.75 vs. 0.70).

e Large contexts (25k+ tokens, n = 59): The
gap widens substantially. Baseline similarity falls
to approximately 0.4, while the RLM maintains
similarity near 0.48.

These results indicate that recursive decomposi-
tion does not solve the long-context problem, but it
softens failure modes. When both methods produce
incorrect outputs, the RLM’s predictions remain
measurably closer to the ground truth. This pattern
suggests that the recursive structure helps preserve
partial information even when full reconstruction
fails.

The contrasting results between OOLONG and
LoCoDiff highlight that RLM effectiveness is task-
dependent. LoCoDiff involves aggregating many
small, localized edits into a cumulative result—a
structure that aligns naturally with recursive decom-
position. Each partition (e.g., a diff hunk or file-level
change) can be processed semi-independently, and er-
rors in one partition may not catastrophically affect
others. OOLONG, by contrast, requires identify-
ing and integrating dispersed evidence for multi-hop
reasoning, where the recursive decomposition may
discard critical cross-partition dependencies. This
distinction suggests that RLMs are better suited
to tasks with inherently modular structure than to
tasks requiring global reasoning over heterogeneous
content.

6 Discussion

The results of our component analysis provide a
nuanced view of Recursive Language Models. While
often touted as a solution to “context rot,” our data
suggests that current RLM implementations face a
different but equally challenging problem: recursion
rot, or the accumulation of error across multiple
steps.

6.1 The Accuracy Gap

The significant performance gap between direct
prompting and RLMs (Figure 2) challenges the as-
sumption that decomposition is always beneficial.
For context lengths that fit within a modern LLM’s
window (like GPT-5-mini), the overhead of break-
ing the context apart, retrieving pieces, and re-
synthesizing an answer destroys more information
than it saves. This suggests that RLMs are best
reserved for truly infinite-context scenarios where di-
rect ingestion is impossible, rather than as a general-
purpose accelerator for moderately long documents.

6.2 Component Synergy

However, when an RLM is necessary, our results
clearly demonstrate that architectural choices mat-
ter. We observe a strong synergy between seman-
tic partitioning and embedding retrieval. Semantic
partitioning ensures that the “leaves” of the recur-
sion tree are coherent thoughts rather than arbi-
trary fragments.Embedding retrieval ensures that
the “branches” of the tree navigate to the correct
leaves based on meaning rather than exact keywords.
Using one without the other limits performance. For
example, using embedding retrieval on token-split
partitions is less effective because even if the model
finds the right location, the partition might be cut
mid-sentence, confusing the child call.

6.3 Cost-Benefit Analysis

The efficiency analysis serves as a caution. All RLM
variants resulted in higher latency and more model
calls than the baseline. This implies that RLMs
should not be the default for all long-context tasks.
Instead, they should be deployed selectively, per-
haps in a hybrid architecture where the model first
attempts a direct answer and only falls back to recur-
sion if the confidence is low or the context exceeds
the hard limit.

6.4 Limitations

While our findings clarify how certain RLM
components affect long-context behavior, there
remain limitations that suggest opportunities for
future work.

6.4.1 Parallelization not empirically evaluated
We implemented a parallel execution framework

for independent recursive calls (Section 3.4), but
full-scale empirical benchmarking was not feasible



under our available infrastructure. Parallel RLM
execution requires issuing many simultaneous model
queries per recursion level, which quickly drives re-
quest concurrency and compute demand beyond typ-
ical APT limits. This constraint is itself informative
and demonstrates a practical systems challenge in
deploying RLMs at scale, where theoretical paral-
lel speedups may be offset by inference throughput
bottlenecks.

As a result, our findings for RQ3 focus on
correctness of the parallel mechanism rather than
measured latency or accuracy effects. We verified
that parallel recursion and stitching operate as
intended on small test cases, but we cannot report
reliable latency improvements or assess potential
accuracy degradation from parallel stitching.
Future work using local model deployments or
high-throughput inference servers could evaluate
parallel RLM execution more comprehensively.

6.4.2 Limited model coverage

All experiments were conducted using GPT-5-
mini, with GPT-5 reserved for limited validation
runs. It is unclear whether the relative performance
ordering of partitioning and retrieval strategies gen-
eralizes to other model families (e.g., Claude, Gemini,
Llama) or to significantly different model scales.
Models with different attention patterns, context
window implementations, or instruction-following
capabilities may exhibit different sensitivities to
partition coherence or retrieval quality.

6.4.3 Benchmark and task scope

While we selected OOLONG and LoCoDiff
to represent two distinct long-context reasoning
patterns, our quantitative analysis focuses pri-
marily on OOLONG. Other task types—such as
long-document summarization, multi-document
synthesis, or retrieval-heavy open-domain QA—may
reveal different trade-offs between partitioning and
retrieval strategies. Additionally, both benchmarks
involve English-language text; performance on
multilingual or code-heavy contexts may differ.

6.4.4 Hyperparameter sensitivity

Semantic partitioning relies on a similarity thresh-
old to detect topic boundaries, and embedding-based
retrieval depends on the number of partitions se-
lected. We tuned these values through preliminary
experiments but did not conduct systematic
sensitivity analyses. Performance may vary under
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different threshold settings, and optimal values
likely depend on document structure and query type.

6.4.5 Stitching not empirically evaluated

We implemented two stitching strategies (i.e., sim-
ple concatenation and structured prompts), but did
not isolate their effects in controlled experiments.
As a result, the interaction between stitching be-
havior and the quality of partial answers remains
underexamined. In particular, stitching errors may
contribute to some of the accuracy degradation ob-
served in our results, but we cannot quantify their
impact without targeted ablations. Future work
should evaluate stitching strategies independently
to determine how they influence end-to-end RLM
performance.

7 Conclusion

This work examines the long-context effect of three
underexplored components of the RLM framework:
how the context is partitioned, how partitions are
selected, and how recursive calls are executed. By
isolating these dimensions, our experiments provide a
clearer picture of which aspects of the RLM pipeline
meaningfully affect accuracy and efficiency.

Our key findings are:

1. Direct prompting currently outperforms
RLMs on benchmarks like OOLONG. The error
accumulation inherent in multi-step recursion
outweighs the benefits of focused attention for
the context lengths tested.

2. Within the RLM framework, Semantic Par-
titioning combined with Embedding Re-
trieval is the superior configuration. This com-
bination minimizes error accumulation by ensur-
ing that partitions are semantically coherent and
retrieval is robust to lexical variation.

3. Efficiency is a major trade-off. RLMs in-
troduce significant latency and token overhead
compared to direct processing.

These results imply that future work on RLMs
should focus less on the recursive mechanism itself
and more on the quality of the intermediate rep-
resentations (partitions) and the reliability of the
retrieval steps. Only by improving the fidelity of
these components can RLMs hope to close the gap
with direct long-context models.

7.1 Impact

This work evaluates alternative partitioning, re-
trieval, and execution choices within an existing



RLM implementation. It does not introduce new
training data, new model capabilities, or changes
to model behavior beyond how the context is seg-
mented and processed. The main practical impact is
operational. Specifically, our work provides clearer
guidance on how to configure RLM-based systems
for long-context workloads, including how different
design choices affect cost, runtime, and consistency.
These findings may help guide allocation of compute
more efficiently or reduce latency in applications that
already use recursive processing of long documents.

The ethical considerations are limited to the usual
constraints of model use rather than to any new risks
introduced by this work. Since the approach only
changes how existing models organize and schedule
computation, improvements in efficiency do not alter
the underlying reliability of model outputs. Any de-
ployment that uses these configurations in settings
involving technical, legal, or other sensitive materials
should continue to apply standard review practices.
Because no new data or model updates are intro-
duced, the risks of this work are essentially the same
as those of the underlying base models that we have
used.

Overall, the contribution of this work is a set of
empirically derived guidelines for configuring RLMs
and managing long-context workloads. These guide-
lines summarize how different partitioning, retrieval,
and execution choices affect accuracy, token usage,
and latency, and they provide a practical reference
for selecting configurations that can improve long-
context performance.

Our full implementation is provided
https://github.com/Krisp140 /recursive-llm.

at
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