Fractals Everywhere: 2D and 3D Procedural Generation and

Rendering

Kristian Praizner, Nick Gilligan

December 26, 2025

Abstract

Fractals are geometric structures that exhibit
self-similarity across scales and arise from simple
iterative rules. This project presents Fractal IFS
Ezxplorer, a real-time fractal visualization sys-
tem implemented in the browser using WebGL,
Three.js, and custom GLSL shaders. The sys-
tem supports both 2D Iterated Function Systems
(IFS), rendered via a two-pass GPU accumula-
tion pipeline, and 3D fractals defined by signed
and unsigned distance fields and rendered by ray-
marching. A full-featured user interface enables
real-time parameter adjustment, animation, and
artistic control. Additionally, an offline video-
rendering subsystem uses FFmpeg.wasm to gen-
erate high-quality MP4 exports at arbitrary res-
olutions and framerates.

1 Introduction and Motivation

Fractals appear ubiquitously in mathematics,
computer graphics, and the natural world. Their
structure emerges from iterated transformations,
yet the resulting forms display complexity rival-
ing natural phenomena such as ferns, coastlines,
coral, and turbulent flows. This duality of sim-
ple rule and complex outcome makes fractals a
rich domain for both scientific study and compu-
tational art.

The goal of this project is to construct a real-
time, browser-based system for rendering and ex-
ploring fractals in both two and three dimen-
sions. Unlike traditional offline fractal render-
ers, our system emphasizes interactive control,
GPU acceleration, and high-quality offline video

export, enabling both live creative exploration
and cinematic production workflows. The imple-
mentation combines React, TypeScript, WebGL,
Three.js, and custom GLSL shaders to deliver a
fast and expressive environment for fractal visu-
alization.

1.1 Background and Influences

This work is primarily inspired by three ma-
jor sources. First, Barnsley’s theory of Iter-
ated Function Systems formalizes the construc-
tion of 2D fractals via weighted affine contrac-
Classic examples such as the Barnsley
fern and Sierpinski triangle arise from compact
parameter sets and stochastic iteration. Sec-
ond, Scott Draves’ Fractal Flame algorithm in-
troduced nonlinear variations, density estima-
tion, and sophisticated color-mapping strategies
that strongly influenced the design of our 2D ac-
cumulation and tone-mapping pipeline [2]. Fi-
nally, natural fractal structures such as branch-
ing plants, mountain ridges, lightning, and tur-
bulent flows motivate the inclusion of both math-
ematically precise models and visually expressive
shader-based extensions.

tions.

2 2D Fractals via Iterated

Function Systems

2.1 Affine Iterated Function Systems

We consider a finite set of affine transformations
acting on the plane:

p = M;p +t;, (1)



where

a; b €i

M, = [ di] L b= M o ©
Each transformation T; = (M;,t;) is selected
with probability p;. When the transformations
are contractive, Barnsley’s theorem guarantees
the existence of a unique attractor invariant un-
der the IF'S. Different parameter choices generate
drastically different fractal structures. For ex-
ample, the Sierpinski triangle arises from three
uniform contractions toward the triangle ver-
tices, while the Barnsley fern emerges from four
asymmetric transformations modeling biologi-
cal growth. Our system provides a preset li-
brary containing these and additional spiral and
dragon-type systems.

2.2 Chaos Game Algorithm

Before introducing the procedural steps, we
briefly motivate why the chaos game is such a
powerful and surprising tool in fractal genera-
tion. Even though an IFS is defined by deter-
ministic affine maps, directly iterating all possi-
ble compositions quickly becomes infeasible due
to exponential growth. The chaos game provides
an elegant stochastic alternative: by repeatedly
applying randomly chosen maps according to
their probabilities, the sequence of points almost
surely converges onto the fractal’s invariant set.
This probabilistic approach yields the full struc-
ture of the attractor without ever computing its
geometry explicitly, making it ideally suited for
high-throughput GPU rendering and interactive
exploration.
The chaos game is implemented as follows:

1. Initialize a random point pg in a bounding
region.

2. Iterate the system for Npyum, steps without
plotting to allow convergence to the attrac-
tor.

3. For each subsequent iteration:

(a) Sample a transformation index i ac-
cording to probabilities {p;}.

(b) Apply pry1 = M;pi + t.

(c) Store the resulting point and associ-
ated color.

For performance, large batches of generated
points and their attributes are stored in
Float32Array buffers before being uploaded to
the GPU. Optional coloring schemes based on
transformation index, iteration depth, and den-
sity are supported, along with morphing between
IFS presets for animation.

2.3 2D GPU Rendering Pipeline

The 2D system separates computation into a
two-pass GPU pipeline:

1. Point generation (CPU). The chaos
game iteratively generates large batches of
2D fractal sample points.

2. Accumulation buffer (GPU). Points are
rasterized with additive blending into a
floating-point framebuffer, building a den-
sity histogram. Zoom, pan, rotation, and
adaptive level-of-detail are handled at this
stage.

3. Tone mapping and color sampling. A
fullscreen quad samples the density texture
and applies logarithmic tone mapping fol-
lowed by palette- or gradient-based coloriza-
tion.

4. Post-processing. Additional screen-space
effects such as bloom, chromatic aberration,
kaleidoscope symmetries, trails, and rota-
tion are applied.

All rendering parameters, including iterations
per frame, brightness, bloom thresholds, color
palettes, decay, psychedelic modes, and morph-
ing, are exposed via a real-time Leva control
panel.



Figure 1: Example 2D fractals generated by the affine chaos game and rendered with the 2D
pipeline (fern and spiral shapes).

3 3D Fractals:
Power Iteration

Mandelbulb

3.1 Mandelbulb Formulation

The Mandelbulb generalizes the complex
quadratic iteration z — 2P + ¢ to three dimen-
sions using spherical coordinates. Given a point
x € R3, we:

1. Convert x to spherical coordinates (r, 6, ).
2. Apply the power p:

r 7P, 0 + pb, 0 po.
3. Convert back to Cartesian coordinates and

add a constant vector c.

Repeated iteration generates a 3D fractal set
whose symmetry and complexity are controlled
by the power parameter p.

3.2 Distance Estimation and Ray-
marching

Rendering is performed using a signed distance

estimator
_ 1lrlogr

DE(x) ~ 2 dr

(3)

where dr is a derivative term updated during it-
eration. A sphere-tracing raymarcher advances
rays by the estimated distance until a surface hit
or miss condition is reached. Surface normals are
approximated using finite differences, enabling
physically motivated lighting including ambient,
diffuse, and specular components, along with
simple ambient occlusion, glow, and background
gradients.

3.3 3D Rendering Pipeline
The full 3D pipeline consists of:

1. Construction of distance fields for Mandel-
bulb, Mandelbox, Menger sponge, and 3D
Julia sets.

2. Per-pixel raymarching on a fullscreen quad
using GLSL fragment shaders.

3. Normal estimation, lighting, shading, and
optional animation.

Uniform parameters control animation modes
such as parameter morphing, escape-time slicing,
and animated folding, driven by a global time
variable. Interactive camera orbit and zoom are
supported in the UL



Figure 2: Rendered Mandelbulb and Mandlebox using the SDF-based raymarching pipeline.

4 Frameworks & Tools Sum-

mary

The system is implemented as a modern web ap-
plication that layers a React front end on top
of a WebGL-based rendering core. Tables [TH3]
summarize the principal technologies and their
roles.

4.1 Rendering Stack

Table 1: Rendering frameworks and tools.

Layer Technology Purpose

WebGL Three.js 3D graphics abstraction;
manages WebGL.

Shaders ~ GLSL Custom vertex/fragment
shaders.

Shader vite- Import .vert/.frag files

import plugin-glsl  as strings.

4.2 UI and State Management

Table 2: UI and application state technologies.

Layer Technology
Framework React 18
Control  Leva

panel

Language TypeScript

Purpose
Component architecture.
Real-time parameter
tweaking.

Static type checking and
tooling.

4.3 Build and Development Tooling

Table 3: Build, deployment, and hosting tools.

Layer Technology Purpose
Bundler  Vite Fast development server.
Hosting  GitHub Static ~ site  hosting  at
Pages kristianpraizner.com/
fractal.

4.4 Architecture Flow

At a high level, the application architecture
forms a unidirectional control and data flow from
the React UI down to the GPU:

React (UI state)
1

Leva (control panel)

1
Three.js (WebGL renderer)

1
GLSL shaders (GPU computation)

1
HTML canvas (display)

React manages application and animation
state; Leva exposes that state as a live control
surface. Three.js translates the resulting scene
graph and uniforms into WebGL draw calls,
while GLSL shaders implement the actual fractal
computation and post-processing, with the final
image presented in an HTML canvas element.


kristianpraizner.com/fractal
kristianpraizner.com/fractal

5 Results and Discussion

The system produces high-quality fractal im-
agery in both 2D and 3D at interactive fram-
erates on commodity hardware. The two-pass
accumulation and tone-mapping pipeline yields
smooth, high-dynamic-range density fields, while
the 3D raymarcher produces highly detailed im-
plicit surfaces with rich self-similarity. Real-time
animation reveals continuous structural transi-
tions in both 2D and 3D fractals. Performance
remains interactive due to GPU-centric design,
bounded raymarch step counts, and adaptive dis-
tance estimator iteration limits. High-resolution
still capture and 4K offline rendering are sup-
ported.

6 Conclusion and Future Work

We have presented a browser-based, GPU-
accelerated fractal visualization platform sup-
porting both classic 2D Iterated Function Sys-
tems and modern 3D distance-field fractals. The
system integrates real-time rendering, interac-
tive UI control, animation, and offline video ex-
port into a unified production environment. The
project demonstrates that high-quality procedu-
ral fractal rendering can be achieved entirely
within a web-based framework.

Future Work. Future work will include the
addition of real-time 3D parameter slicing con-
trols, higher-resolution performance optimiza-
tions, VR/AR visualization modes, and hybrid
neural—fractal rendering techniques for learned
distance fields and stylized output.

References

[1] Michael F. Barnsley. Fractals Everywhere.
Academic Press, 1988.

[2] Scott Draves. The fractal flame algorithm.
In Non-Photorealistic Animation and Ren-
dering, 2003.



	Introduction and Motivation
	Background and Influences

	2D Fractals via Iterated Function Systems
	Affine Iterated Function Systems
	Chaos Game Algorithm
	2D GPU Rendering Pipeline

	3D Fractals: Mandelbulb Power Iteration
	Mandelbulb Formulation
	Distance Estimation and Raymarching
	3D Rendering Pipeline

	Frameworks & Tools Summary
	Rendering Stack
	UI and State Management
	Build and Development Tooling
	Architecture Flow

	Results and Discussion
	Conclusion and Future Work

