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Abstract—The agricultural industry is the backbone of society.
This project proposes a machine learning-assisted robotic system
using the KUKA IIWA to sort various fruits into designated
bins, benefiting the industry. The system addresses three key
challenges: perception, motion planning, and grasping.

Perception employs machine learning algorithms and point
cloud processing to classify fruits by type, shape, and size. Motion
planning utilizes Drake’s trajectory optimization for precise
kinematic control. Grasping incorporates antipodal heuristics
and models fruit malleability to handle fruits gently, minimizing
damage.

Inspired by prior work on robotic grippers and CNN-based ob-
ject pose estimation, the project integrates cutting-edge robotics
and machine learning techniques to deliver a scalable, efficient
fruit-sorting solution for real-world agricultural applications.

I. INTRODUCTION

Sorting fruits manually is labor-intensive, time-consuming,
and prone to errors [1]. Automation can increase the speed
and accuracy of sorting, significantly reducing labor costs
and the potential for human error, which is vastly integral
in industries with tight deadlines such as the agricultural
industry. Once implemented, a robotic system can be scaled
easily to handle varying workloads without increasing human
resources. Reducing human interaction with heavy lifting or
repetitive tasks such as sorting will lead to fewer workplace
injuries [2], higher efficiency (more fruit sorted per unit time),
and potentially higher accuracy. The robotic system can be
optimized to pick certain fruits based off a vision model,
making it able to spot deformities and act more diligently
than a trained human. The system can also be trained to
optimize its gripping force, protecting the deformable fruits
from damage.

II. RELATED WORKS

A. Sorting Clutter

Manipulating objects in a crowded scene is a common
problem in robotic manipulation tasks. This task requires
motion planning, grasping, and point cloud processing. The
in-class solution to this problem is riddled with bugs and is
not robust at all. The motion planning system does not try to
avoid obstacles, and the vision system doesn’t identify objects
but only looks at point clouds and tries to pick them. We use

Fig. 1. Example of a cluttered fruit scene.

this base model as a starting point, and build off of it to make it
considerably more robust and efficient. [4] Goes into a similar
idea of using pose estimation with a CNN-based approach
that retrains itself as it categorizes objects. While this novel
approach is quite effective for their solution, it proves to be
too resource-heavy and complex to quickly manipulate fruit in
a factory setting. Therefore, a simpler solution for training a
network based on the fact that we know what fruits are going
to be in the scene is more effective.

B. Deformability

Manipulation of deformable objects is a challenging task
in robotics. [3] discusses many important subjects related to
our project. First, it discusses possible simulation methods for
simulating fruit damage and bruising, with pressure feedback
being one of the main drivers. We are advancing on that by
using machine feedback and object deformity as measures so
that we can also pick up fruits like bananas that might get
damaged but not bruise as easily. It also talks about the risks of
different types of damage with different gripper types, where
a basic electric gripper can be used fairly effectively with low
damage risk.

III. METHODOLOGY

We developed a KUKA IIWA robotic system capable of
sorting different types of fruits into their respective bins. This
project’s details can be divided into three different subparts,
including the setup, the technical aspects of the robot, and the
evaluation criteria. The technical aspect can also be divided



into three subproblems: perception, motion planning, and
grasping.

A. Setup

The scene is modeled to represent a realistic factory setting.
A pile of assorted fruits is cluttered on a table to represent a
conveyor belt. The IIWA arm sits on the side of the table and
has bins on the other side of it that correspond to the different
types of fruit being modeled. These fruits are deformable as
a way to simulate damage to them during the process. The
fruit will be of different types, shapes, and sizes. There also
exist cameras in the scene that help with capturing the point
clouds through three different angles

Fig. 2. Initial scene showing the robot with bins behind it. Also with the red
apple on the track on front of it and cameras above the track.

B. Technical

• Perception
The crux of the problem comes from the robot’s require-
ment to identify the different fruits that appear before
it. In order to achieve this, we used data augmentation
in order to generate bulk data sets to train an RCNN
algorithm. In order to generate a random dataset for
training, we used data augmentation to create many
different random fruit configuration and extract mask
images, rgb images, and labels to train on. After gen-
erating many random configurations of fruits, we then
fed them into an RCNN algorithm, which is trained to
then identify objects and provide predicted masks given
an RGB image. We then place this trained algorithm back
into the simulation environment to assist in our sorting
task. This helps the grasping module because it allows
the isolation and segmentation of the item masks, and
therefore the isolation of their point clouds to assist in
grasp selection. We also get a label from this algorithm,
which the motion planning module uses in order to select
which bin the fruit should be placed in. A key aspect of
this system is that it is capable of function in a normal
application where the data the robot gets purely RGBD.
With only a picture and a depth map, the robot can find

the mask of the fruit, and isolate the point clouds based
on that information.
Side Note: Though it is not implemented yet because
of technical difficulties implementing grasp control, the
plan was to use the random configuration creator from
the perception module to create scenarios for testing the
full end to end implementation.

• Motion Planning
Once the fruit has been identified, our robot’s motion
control system guides the robotic arm and end effector
to pick up the fruit and place it in its corresponding bin.
This requires precise kinematic control, and optimal path
planning from Drake’s trajectory optimization functional-
ity and rrt planning to ensure efficient and safe movement.
This motion module can be split into separate stages
for our different movement stages. They are as follows:
prepare to pick up fruit (position hand in close proximity
to expected location), pick up the fruit (lower end effector
to fruit level), and move fruit into their respective baskets.
Also incorporated in this Motion Planning is collision
avoidance, as we do not want the arm to hit any other
objects while in motion.

• Grasping
Starting from the end effector position achieved by our
motion planner and the point clouds from the cameras
in the perception module, the built-in IIWA arm grasper
selects where we should make contact with the object
to enable a firm grasp. We used antipodal grasping
heuristics in the perception module to enable a valid
grasp. This module also accounts for the malleability
and fragility of fruit, and is trained to grasp in a gentle
way so as to not damage or alter the fruit. Without this,
this project would lack real world applications because
our robot would end up damaging the fruits.

• Deformability
Drake’s built in support for deformability is used in order
to simulate damage done to fruits by the robot arm. This
module allows us to assess how viable the arm is in
actual real-world applications, as the highest priority in
applications like this will be to preserve the produce until
it reaches the end consumer. Once the fruit models are
acquired, they will be calibrated to make them roughly as
rigid as their bodies would be in real-world applications.
We have provided a function in our code that initialize a
vtk file into our simulation, allowing new fruit to be added
into the variations very easily. During the simulation, the
way we are going to observe deformability is through
the point clouds of the fruit. By observing the difference
in the point clouds before grasping and motion and after
grasping and planning, we can predict how much these
fruits would be damaged should we employ this system
in a real-world environment. A limitation of note is that
these files need to be calibrated manually in order to
get accurate results. For our simulation, we used real
world mass metrics, and adjust physics coefficients based



on real world experiments. This is a complex and long-
winded process of trial and error so this is a spot where
our project could be expanded to be more accessible.

C. Evaluation

Evaluation of the robotic system is dependent on various
criteria. These criteria are speed (fruit sorted per unit time),
accuracy (percentage of fruit correctly placed in bins), and
damage to the fruit (measured by deformations). Our main
goal is to maximize accuracy, with fruit damage and speed
being secondary values we would like to maximize. Our initial
goal is 90 percent accuracy, and that value may increase or
decrease depending on how our first trial runs go. Goals for
the damage and speed are determined after an initial project
run has been completed.

IV. EVALUATION AND DISCUSSION

A. Perception

Due to technical limitations in a deep-note environment,
datasets were only able to generate 100 data points at a time.
This likely reduced the effectiveness of our perception module,
but we are proud to say that we still achieved a very successful
model with our limited data, potentially due to our smart data
generation.

By using a pre-trained item identification Mask-RCNN
model, we were able to extract a lot of use out of our data we
were able to generate. When applied to random configurations
of fruit (excluding edge cases where fruit falls out of frame),
the algorithm we trained was able to achieve a 93 percent
accuracy when observing a fruit configuration from a single
angle. Since we are using three cameras from different angles
in the actual grasp selection, we expect the results to be
even more exceptional should our motion planning and grasp
module achieve full functionality.

We can use this metric as a proxy for our accuracy metric,
and if we do, we get a very good result for our initial project.
As a reminder, we are limited in the number of data points
and the number of training epochs we are able to perform, so
93 percent is a very good starting point. Given proper training
resources and a number of data points closer to 10,000 or
100,000, we should be able to achieve close to 99 percent
accuracy in object identification and mask segmentation and
therefore a close to 99 percent accuracy in bin sorting given
a good motion planning module.

To summarize, we blow our accuracy goal out of the water,
which is nice to see. In edge cases, our accuracy can drop
below 88 percent, but most of the time, we are well above 90
percent.

Author’s Note: The model was trained on a CPU so the
training was slow and there was not much of it. A technical
accident resulted in the original machine that our team was
using catching fire, and therefore we operated on limited
capacity for the final stages of our project. Our team judges
our current accuracy to be exceptional and predict our full
functionality would be accurate enough for use in real-world
applications.

B. Motion Planning
The RRT implementation of the motion planning success-

fully brought the end-effector to the necessary points without
collision, however the speed at which it worked was not
up to the initial standards. Further optimization methods are
needed to increase this speed to make it suitable for a factory
environment.

C. Grasping
The grasping module - inherently to the structure of the

system - is dependent on the perception module. Due to
unforeseen technical difficulties, the fully combined grasping
module was not working properly by the time that this was
written. Due to the concerns in the other issues, a simpler
grasping metric with point cloud processing with ICP was
done for proof of concept, and valid grasps were achieved on
the simple models. Although the entire full-stack system could
not come together to produce valid force-controlled grasps on
deformable objects, simple grasps were achieved for the sake
of the paper.

Fig. 3. Example of a valid grasp pose on a apple. Pose is represented by a
Meshcat triad.

D. Deformability
Unfortunately, due to technical difficulties related to the

vtk file format and the difficulty of creating or converting
properly formatted files, we were unable to find or create
proper vtk files for our fruit. Even after receiving support from
TAs, our simulation environment simply could not process the
fruit vtk files that we were composing. However, we were
able to run the simulation using the drake torus vtk file. We
used this to provide a proof-of-concept for our idea, even
if we were unable to get our actual fruit models working.
By editing the physics coefficients, we were able to provide
different behaviors to the models to simulate different densities
and material behavior. Although we were unable to get our
grasping and motion planning working to really see to what
extent our robot can sort fruit without extra damage, we were
able to see what it would look like. (Fig 4)

V. FUTURE WORK

A. Perception
It would be interesting to expand this project in two ways:

we want more training data in more varied environments.



Fig. 4. Example of a fruit configuration used for training.

If we were to expand this with more training data, we would
mainly be wanting higher accuracy (which occurs naturally
with more data) and more fruit variations. Currently we have
two fruit that are not very similar (apples and bananas). An
interesting expansion would be to add fruit variations that look
similar, such as peaches and apples in the same simulation
group. This would be closer to real world applications where
perhaps these machines will be used in apple orchards and
may need to separate apples, pears, and peaches.

Another direction would be to train this in more varied
environments. Our current model is trained specifically on
our ”conveyor belt” environment. This environment is constant
in our model and we do not have any other environment in
which to train. This will almost definitely make our model less
reliable if used in different spaces. It would be interesting to
see this model trained in varied environments to make it more
easily integrated into other systems.

B. Deformability

Due to unforeseen limitations with the codebase given
for vtk conversions, we were unable to provide performance
metrics for our deformability module. However, our proof-of-
concept provides room for expansion on future projects. A nice
short expansion would be to make the process of new models
more automated so that they do not have to be manually
calibrated. Our function for integration of deformable bodies
enables future projects to alter the parameters for their own
purposes, which enables the potential to abstract this project
to many different applications. If the goal is to harvest the
produce at a different ripeness level, this aspect will make it
easy for the model to be adjusted. Upon adjustment, the model
would be more gentle if the fruit is supposed to be softer or
more ripe.

C. Grasping

The current grasp solution does not work with the full-scale
system, so future work can be fully completing this module
with additional costs involved with the fruits’ malleability.
Once a full grasp solution is found, additional vision elements
can be expanded on to make this fully work in a moving
conveyor belt, as was envisioned in the original proposal of
the project. Along with the speed constraints with the motion

planning, this would make the system efficient enough to be
employed in a realistic setting.

VI. CONCLUSION

This project has presented a machine learning-assisted
robotic fruit-sorting system designed to address three key
challenges in automated agricultural tasks: perception, motion
planning, and gentle grasping. By combining a KUKA IIWA
robotic arm with advanced vision techniques, deformability
simulations, and intelligent manipulation strategies, we have
taken important steps toward a more robust and flexible
solution suitable for real-world industrial applications. The
system, once fully fleshed out, could potentially operate in a
factory setting, increasing efficiency, reducing labor costs, and
minimizing fruit damage, all while maintaining high sorting
accuracy.

From a perception standpoint, our use of augmented
datasets and an RCNN-based object detection pipeline pro-
vided promising results despite limitations in the training
environment. With few training samples, we achieved mask
segmentation and object detection accuracies surpassing 90
percent, demonstrating the strength and adaptability of our data
generation and machine learning approach. Though further
work is required to scale up the training data and improve
the model’s performance in more varied environments, these
initial results underline the potential for near-perfect accuracy
with sufficient computational resources and larger datasets.

On the motion planning front, we employed trajectory
optimization techniques within Drake and RRT-based methods
to enable safe and collision-free movements. While the results
did not meet our initial speed targets, the system successfully
guided the arm to designated fruit, validating the desired
approach. Future refinements may involve more efficient path
planning algorithms, hardware acceleration, and improved
optimization strategies, all of which would help meet strict
industrial time requirements.

Grasping remains an area for further development. Our pre-
liminary demonstrations using antipodal heuristics and simple
point cloud processing show that stable grasps can be achieved
on well-defined objects, but integrating deformability consid-
erations and force control into a complete pipeline proved
challenging. The inability to process deformable fruit models
due to technical difficulties with vtk file formats prevented
full validation. Nevertheless, the proof-of-concept illustrates
the potential to adapt grasp strategies to different fruit types,
shapes, and ripeness levels, reducing damage and preserving
quality.

Moving forward, the project could benefit from more ex-
tensive training datasets, automated deformability calibration,
and improved perception and planning modules. Expanding
the fruit library to include visually similar produce and gener-
alizing to new environments would enhance system robustness.
The long-term vision is an integrated system capable of run-
ning seamlessly on a moving conveyor, autonomously identify-
ing, sorting, and delicately handling an assortment of fruits at
production scale. Ultimately, this research marks a significant



step toward automation solutions that can revolutionize the
agricultural industry, providing greater speed, accuracy, and
consistency while protecting produce quality.

CONTRIBUTION STATEMENT

Kristian did work on the project that pertained to the scene
design and simulation creation. It also included motion plan-
ning and grasp control. This includes subjects like collision
avoidance, grasp control, point cloud processing, and the
general diagram/system design.

John did work related to perception and object initialization.
This included generating datasets and finding ways to train
a perception module to isolate and identify fruit from RBG
image feeds. It also included finding models, importing them,
and integrating them with the simulation environment, along
with configuring deformable entities to work in the simulation.
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